Ch00 Practice2
Yang Haoran 6/14/2022 DL
# Ch00 Practice2
定义sigmoid函数和他的导数
import numpy as np
def sigmoid(x: np.array):
return 1 / (1 + np.exp(-x))
def derivative_sigmoid(x: np.array):
return np.exp(-x) * np.power((1 + np.exp(-x)), -2)
if __name__ == '__main__':
print(1)
test = np.ones([2, 2])
print(derivative_sigmoid(test))
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
2
3
4
5
6
7
8
9
10
11
12
13
14
15
绘制图像:
plt.figure(figsize=(5, 5))
plt.title("function")
x = np.linspace(-30, 30, 500)
y1 = sigmoid(x)
y2 = derivative_sigmoid(x)
plt.plot(x, y1, color='red', linewidth=1.0, linestyle='--', label='sigmoid')
plt.plot(x, y2, color='blue', linewidth=1.0, linestyle='--', label='derivative_sigmoid')
plt.legend()
plt.show()
1
2
3
4
5
6
7
8
9
2
3
4
5
6
7
8
9